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Uncorrelated scale-free networks are necessarily small world �and, in fact, smaller than small world�.
Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe
a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is
possible to generate scale-free networks, with arbitrary degree exponent ��1, such that the average distance
between nodes in the network is large. To achieve this, nodes are not added to the network with preferential
attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is
physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks
arises through a mechanism similar to what we present here. Simulations show that this network exhibits very
similar physical characteristics �very high assortativity, clustering, and path length�.
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I. INTRODUCTION

Over the past two decades, complex networks have been
intensively investigated �1–3�, especially small-world �4� and
scale-free networks �5� and during this time the Barabási and
Albert �BA� model of preferential attachment has become the
standard mechanism to explain the emergence of scale-free
networks. Nodes are added to the network with a preferential
bias toward attachment to nodes which already have a high
degree. This naturally gives rise to hubs with a degree dis-
tribution following a power law �i.e., the frequency of nodes
whose degree is k� P�k��k−�.

Many authors have sought, and found evidence of, small-
world and scale-free networks in a wide variety of settings
�6�. For most of these examples, the preferential attachment
model provides a good explanation of the mechanism under-
lying the origin of the scale-free structure observed in the
network. However, the preferential attachment model does
lack one feature common in real world data: there is no bias
for highly connected nodes to be connected to one another,
or for poorly connected nodes to be associated with other
poorly connected nodes �7,8�. In the case of our own work,
we have frequently observed scale-free networks with strong
assortativity and large average path length �14,15�. Networks
from both of these sources will be considered in more depth
in Sec. IV.

In �9�, Cohen et al. reported that uncorrelated scale-free
networks are “ultrasmall.” Despite the title of that paper, this
is only necessarily true for networks that are uncorrelated
�the assortativity is zero�. In the existing literature there is
very little attention focused on modeling complex networks
by enhancing assortativity. One notable contribution focuses
on enhancing assortativity of an existing scale-free network
through rewiring two links between four end points �10�. In
contrast, our model is a method to grow a scale-free network
that is generated as assortatively as possible based on a

greedy algorithm �it may even be possible to combine both
methods to further accentuate the resulting assortativity�.

In contrast, disassortative networks have recently received
some attention. Klemm and Eguíluz �11� introduced a novel
network growth algorithm that accentuates clustering and
lead to strong disassortativity �that is, negative assortativity
coefficient�. They showed that by allowing a small changing
group of nodes to be “active,” and by biasing preferential
attachment to select these nodes, one leads to a highly clus-
tered and disassortative network, which under some circum-
stances also exhibits a large average path length �11�. The
network growth algorithms leads to the low degree nodes
connected to multiple discrete high degree hubs. In contrast
our model has large degree nodes collected together, rather
than isolated. Surprisingly, we still observe a very large av-
erage path length.

Following a similar rationale to the idea of �11�, Gómez-
Gardeñes and Moreno �12� introduce an “affinity” parameter
to the network growth algorithm and allow nodes to prefer-
entially attach to others with similar affinity. Affinity could
represent any physical quantity, and in our algorithm would
be analogous to node degree. Nonetheless, the algorithm por-
trayed in �12� also generates disassortative networks and the
average path length grows slower than, but proportional to,
the standard BA algorithm �it is still smaller than small
world�. In a recent corollary to this work, Moreno and
Vásquez �13� explored the spread of a contagion on such a
network. They showed that in such a networ susceptible-
infected-susceptible �SIS�-type infections did exhibit a non-
zero threshold. In light of this result, and our own recent
finding that the global Avian Influenza pandemic exhibits
scale-free but not small-world characteristics �14�, we pro-
pose a model for generation of a scale-free network with
large average path length and show that the physical motiva-
tion and topological characteristics of this network closely
match the network observed from global Avian Influenza
�AI� data �14�.

This paper is organized as follows. We first introduce the
modeling mechanism in Sec. II; then the analysis of the key
characteristics for our models is illustrated �Sec. III�, espe-
cially the average path length �Sec. III D�; finally, we sum-
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marize some significant properties of this algorithm so as to
draw a comparison between the usual BA network and our
models �Sec. IV�. We also estimate the same ensemble of
topological characteristics for the global spatiotemporal net-
work of Avian Influenza outbreaks �14� �Sec. IV D�. We find
that this network matches very closely to the mechanism
proposed here. Finally, in Sec. V we conclude.

II. SCHEME

In this paper we propose the following scheme to con-
struct a network given the degree distribution P�k��k−� �al-
though the algorithm is not necessarily confined to power-
law form�. Note that, in contrast to the BA model, we must
specify the degree distribution a priori. This has the advan-
tage of allowing arbitrary choice. Moreover, there is abun-
dant evidence for the ubiquity of the power-law distribution
in natural and physical systems, and we feel that it is there-
fore not unreasonable to make such a choice �17�.

Step 1. Determine the sizes of the original and expected
final network. A fully connected network with m0 nodes is
used to initiate the model; a new node is added to the net-
work each time until the expected size of the network is
reached, say N.

Step 2. Choose a function for the degree distribution of
the model. In order to generate a scale-free network, we con-
sider the probability density function �PDF� of the degree
distribution as P�k�=ck−� �where c is a corresponding posi-
tive constant for predetermined N and � satisfying
�k=1

N P�k�=1�. Then c�N ,��= 1−�

N1−�−1
can be calculated di-

rectly to ensure that �k=1
N P�k��1.

Step 3. Establish the degree of a new node.
Step 3.1. At each time t, we take the degree of the

�m0+1�th node randomly from the set {�k�1�k�min	m0+ t
−1,kmax
}, where kmax is the maximum degree obtained by a
“natural” cutoff �the critical maximum degree that satisfies
NP�k��1�. For convenience, we choose a random number
satisfying P�k�=c�N ,��k−�.

Step 3.2. Before adding a new node, determine whether
the chosen degree is already saturated. That is, determine
whether the current sample value

P̂�k� =
N�nodes with degree k�

N�nodes�

satisfies P̂�k�� P�k�. If this is the case, generate another new
degree according to step 3.1; otherwise take it as the degree
of the new node.

Step 4. Connect each new node to the existing network as
assortatively as possible. By applying a greedy principle, we
first connect the new node to the existing nodes which have
the same degree. If none exist, we connect it to the nodes
whose degree is higher or lower by n=1. If it fails again,
increase the value of n by 1 and repeat.

Because new nodes are wired into the existing network
one at a time, this algorithm guarantees that the resultant
network is connected and that multiple distinct edges con-
necting two nodes will not occur. This scheme naturally
leads to two different types of networks, depending on

whether the wiring of new nodes to the existing structure
�when more than one node in the current network has the
appropriate degree� is done strictly sequentially �unshuffled�
or randomly �shuffled�.

A. Shuffled version

In step 4, the set of existing nodes which is chosen to link
the new node may not be unique, so we randomly choose
one of them to be connected to the new node. When the
network is generated by randomly choosing a node from
among those that match the criteria in step 4, we call this the
shuffled scheme. Figure 1�a� plots the shuffled model with
�=2, m0=6, and N=250. A counterpart to this scheme can
be found in social networks, which possess strict hierarchical
social structure and are assortative within different layers �8�.
For example, assume that a social community has a strict
hierarchical structure �high assortativity� and the number of
friends of each person obeys a power-law distribution. The
shuffled model means that under the circumstance, a new-
comer selects his friends randomly from the persons who
have a similar number of friends in this community. A new
“salesman” will be friends with other salesman that are

(a)

(b)

FIG. 1. �Color online� Shuffled �a� and unshuffled �b� models
with m0=6, �=2 and the size N=250.
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equally gregarious. Conversely, a new “physicist” will likely
become connected with other equally solitary individuals.

B. Unshuffled version

In contrast to the shuffled model, we also define the un-
shuffled �or preferential� model, shown in Fig. 1�b�, in which
the existing nodes are chosen to connect to the new nodes in
sequence. This model can be explained by the phenomenon
that in some social communities senior individuals have pri-
ority when all other conditions are equal. That is, newcomers
will attempt to connect with existing members of the com-
munity with equal degree, but will always connect preferen-
tially with those that have been established in the community
for longer.

At this point it is possible to suggest a pseudoanalytic
justification for the non-small-world nature of networks con-
structed with this scheme. As Fig. 1�b� suggests this un-
shuffled algorithms leads to long chains of sparsely con-
nected nodes. The reason for this is that when a node with
high degree is randomly drawn, it is immediately closely
packed with the other hub nodes, and this is done sequen-
tially. Moreover �and more importantly for the discussion of
path length�, low degree nodes also wire themselves to the
network sequentially and therefore form long chains. The
length of these chains depends on the relative probability of
lowly connected nodes occurring. The path length therefore
is related to the frequency with which nodes of low degree
are drawn from the power-law distribution. The long chains
of degree 2 nodes are evident in Fig. 1 and these play a
dominant role in the average path length. The average path
length is therefore proportional to the expected number of
nodes of degree 2 to appear in these networks. The occur-
rence of chains of degree 3 nodes �evident at the bottom of
the illustration in Fig. 1� complicates this argument. We now
turn to consider the structural properties of these networks in
more detail.

III. NETWORK PROPERTIES

We now present a numerical study of the main measures
of network geometry: assortativity �Sec. III A�; rich-club
prevalence �Sec. III B�; clustering �Sec. III C�; and average
path length �Sec. III D�. Of these statistics it is average path
length which is of greatest interest to us, and so it is this
quantity which we study closest. A summary of these various
properties will be presented in Table I.

A. Assortativity

Assortativity by degree refers to the characteristic that
nodes tend to connect to other nodes with similar degree.
The preference for a network’s nodes to attach to others that
are similar in degree are often found in the mixing patterns
of social networks �2,8�. The assortativity coefficient is given
by

r =

M−1�
i=1

N

jiki − �M−1�
i=1

N
1
2 �ji + ki��2

M−1�
i=1

N
1
2 �ji

2 + ki
2� − �M−1�

i=1

N
1
2 �ji + ki��2 ,

where ji and ki are the degrees of the two end points of ith
edge, M is the total number of edges in the network. If r
�0, then the network is assortative; while r�0 represents a
disassortative network. The BA scale-free network has assor-
tativity coefficient r=0 �2�. Figure 2 shows the assortativity
coefficients of our shuffled and unshuffled model, respec-
tively. Compared to r=0 for the BA network, the assortativ-
ity coefficients of the two models are much larger and, more-
over, increasing with the network size. Our two models
exhibit a similar level of assortativity since the mechanism of
greedily assortative mixing at each step is similar for both
models.

B. Rich clubs

Rich-club connectivity describes the characteristic that
highly connected nodes tend to be connected with other high

TABLE I. Properties of the three models with N=1000, m0

=6, and m=6. Here, APL, CC, and AC represent sample average
path length, clustering coefficient, and assortativity coefficient, re-
spectively. For the two AI networks N=3346.

� APL CC AC

BA model 3 2.83�0.01 0.047�0.002 −0.042�0.008

Shuffled 2 7.21�0.37 0.052�0.002 0.676�0.027

Unshuffled 2 32.58�7.21 0.202�0.016 0.693�0.034

AI �dated� 1.2a 47.23 0.285 0.715

AI �undated� 0.4b 16.46 0.870 0.784

aAccording to the calculation presented in �14�.
bThe statistical fit in this case is weak. The data is insufficient to
conclude that the network actually is scale-free.

500 1000 2000 3000 4000 5000
0.6

0.65

0.7

0.75

0.8

r

N

Unshuffled model
Shuffled model

FIG. 2. �Color online� Assortativity coefficients of the shuffled
and unshuffled models. Both models have similar values which are
much larger than r=0 of the BA scale-free model and are growing
as the size of the network model expands.
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degree nodes. The rich-club connectivity coefficient of the s
richest nodes is depicted by

��s/N� =
R

s�s − 1�/2
,

where R is the actual edges between the most s richest nodes.
Figure 3 is obtained by choosing the network sizes N
=1000 and m0=6, m=3 for the BA network model to guar-
antee nearly the same numbers of edges. From Fig. 3, it can
be concluded that the rich-club coefficients of the shuffled
and unshuffled models are the same and they are both much
higher than that of the BA network. This is natural since our
method is greedily assortative mixing while the schemes of
BA network modeling include preferential attachment. Be-
sides, the assortative attaching mechanism leads to about 3%
of the richest vertexes tending to be connected with each
other and having significantly less links to other “poorer”
ones. The low-degree nodes, since they prefer to link to
themselves, form loops among themselves in the two new
models. The presence of these loops contributes further to
the elevated rich-club coefficients of our models.

C. Clustering

The clustering coefficient is defined as the average value
of all the clustering coefficients of a single node, which
means the ratio of the total number of links between the
immediate neighbors of a node to the maximum possible
number of links between these neighbors �4�. Clustering co-
efficients of the BA network and the shuffled and unshuffled
models are depicted in Fig. 4. The clustering coefficient of
the unshuffled model assumes a much higher value than the
other two. Since older nodes have the priority to obtain links
each time, the nodes which are chosen to link a new node
have a high probability to have been joined together. Thus
the neighbors of a new node are most likely to be connected
to each other. On the other hand, the difference of the curves
between the BA model and the shuffled model is due to the
assortative mixing mechanism.

D. Path length

Finally, average �characteristic� path length is the most
important measure of the efficiency of information or mass
transport on a network. Moreover, it is this characteristic �or
rather the trend of this characteristic� that is used to define a
network as small world. It is defined as the average number
of steps along the shortest paths for all possible pairs of
network nodes �1�, denoted L. Figure 5�a� reveals the aver-
age path lengths of a BA network and the shuffled and un-
shuffled models. Simulations demonstrate that LBA, Lshuf, and
Lunshuf scale as ln N

ln ln N , ln N, and N, respectively, as can be
seen in Fig. 5.

Networks are said to show the small-world effect if L
scales no more than logarithmically with network size N for
a fixed mean degree �7�. Obviously, the new unshuffled
model displays no small-world characteristic. In the shuffled
model, for P�k�= N

N−1k−2, we have kmax= � N

N−1

�, where �·� rep-
resents the floor function, and then we have ln kmax� ln N.
Besides, it is shown that

�k� = �
1

kmax

kP�k� =
N

N − 1 �
1

kmax

k−1 � ln kmax,

where �k� is the mean degree of the whole network. As a
result, we get that �k�� ln N. According to the small-world
effect, it can be seen that if the mean degree increases, a
network exhibits small-world characteristic whose average
path length L should scale strictly less than logarithmically
with N. Therefore our shuffled model shows small-world
�but not “ultra-” small-world� behavior.

The fact that the unshuffled model has a much higher
average path length than the shuffled model is due to the
higher clustering in the unshuffled model. In the unshuffled
model, new nodes are added systematically to the earliest
node in the current network which matches the required cri-
terion �that is, have the right degree�. Hence successive new
nodes are often added to adjacent nodes �or at least nearby
regions� of the existing network, and so are more likely to be

1% 10% 100%
0.5%

1%

10%

100%
φ(

s/
N

)

s/N

Unshuffled model
Shuffled model
BA model

FIG. 3. �Color online� Rich-club coefficients of the shuffled,
unshuffled, and BA scale-free network models with m0=6, m=3,
and N=1000. The rich-club coefficients of the new models are
much larger than that of the BA network model for small fractions
s /N and the three curves converge only gradually.

500 1000 2000 3000 4000 5000
0
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Shuffled model
Unshuffled model
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0.09

ln(N)2/N

FIG. 4. �Color online� Clustering coefficients of the shuffled,
unshuffled, and BA network models. The clustering coefficient of
the shuffled model is a little higher than the BA network model,
while that of the unshuffled model is substantially higher. The inset
shows the same data plotted on the log-linear scale. For comparison
we also plot the expected �for the BA model� ln N2 /N curve.
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neighbors themselves. Hence the unshuffled network has a
higher level of clustering than the shuffled model. Finally,
this increased clustering means that there are fewer long-
range links and therefore the average path length is larger.
The consequence of this construction can clearly be seen in
Fig. 1.

This feature has an intuitive analog in experimental net-
works. In the social community, for example, the fact that
senior people have priority introduces societal inequality and
can �necessarily� make society less efficient, and this lead to
longer paths to transport information. On the contrary, ran-
domly selecting makes the society more fair and equitable
and then information transports quicker. By forming cliques
of mutually connected individuals this necessarily generates
chains of those that have relatively low degree �this can be
seen in Fig. 1�. Consequently, these chains contribute signifi-
cantly to increasing the overall path length of the network.

IV. EXTANT NETWORKS

In the previous sections we introduced our network gen-
eration scheme which allows for the generation of scale-free
networks which are not small world. To the contrary, net-
works generated with this algorithm can have very large av-
erage path lengths. In this section we compare the behavior
of our algorithm to other algorithms for generating correlated
scale-free networks. We also compare our algorithm to ex-
perimentally generated data from two sources: time series

analysis and disease outbreak records. In Sec. IV A we com-
pare our algorithm to techniques proposed in �11–13�. In Sec.
IV B we analyze networks derived from time series �as de-
scribed by �15�� and in Sec. IV C we provide an analysis of
the Avian Influenza transmission path network described in
�14�.

The comparison to other networks we present here is far
from comprehensive. To provide an exhaustive study of the
statistical properties of these networks is beyond the scope of
the main message we wish to present. We include these data
based networks only to illustrate that scale-free networks
which are not small world do actually occur in practical situ-
ations. The questions of whether these networks were actu-
ally generated with precisely the scheme we propose in this
paper is far more subtle and complicated.

A. Alternative algorithms

The algorithm introduced by Gómez-Gardeñes and
Moreno �12� does not show anything other than an increase
in path length by a constant factor �depending on their algo-
rithmic parameter ��. In �12� �Fig. 2 of that paper� they show
that their algorithm produces scaling of path length �with
parameter �� that is proportional to the Barabási-Albert
model, and is independent of network size. That is, the
Gómez-Gardeñes-Moreno network produces a path length
which is approximately proportional to ln N

ln ln N . In contrast, the
path length of networks produced with our algorithm is pro-
portional to either ln N or N.

In �11� Klemm and Eguíluz describe an algorithm for
which the average path length scales like ln N except for the
special case where networks are constructed without long
range connections ��=0 in the nomenclature of Klemm and
Eguíluz�. When this is the case ��=0�, the network structure
is disassortative and no longer small world �see Fig. 6�. In
contrast to the correlated but ultra-small-world model of
Gómez-Gardeñes and Moreno �12� the algorithm proposed
by Klemm and Eguíliuz �11� can actually be made to yield
scale-free networks which are not ultra-small-world. How-
ever, our network is both scale-free and highly assortative.
As we illustrate in Fig. 6, the network of Klemm and Eguí-
liuz is disassortative. Hence while Klemm and Eguíliuz
achieve a large path length by stretching out their network,
our network remains densely packed. The large average path
length in our network is perhaps even more surprising in
light of the very strong assortativity.

B. Time series networks

Zhang and Small �15� describe a method to represent an
oscillatory time series as a complex network. The procedure,
essentially, is the following. One partitions the time series
into discrete cycles and measures the correlation between all
pairs of cycles. Each cycle then represents a node of a com-
plex network, with a link between two nodes if the correla-
tion is sufficiently high �or equivalently, if the phase space
distance is sufficiently low�. The details of the procedures
described in �15� and the corresponding results are beyond
the scope of the current work. What is relevant here is that if
this procedure is performed on chaotic time series, the cor-
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FIG. 5. �Color online� Average path length in the BA network,
the shuffled, and unshuffled model. It is obvious that Lunshuf �N �a�.
In �b� simulation shows that LBA� ln N / ln ln N and that Lshuf

� ln N.
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responding network is complex and exhibits a power-law
distribution of vertex strength. Nonetheless, for a given con-
nection threshold �18� the networks are also highly assorta-
tive �by construction this should be obvious� and may not
exhibit a very short average path length. This is due to the
dynamics of the system underlying the time series from
which the network is generated. Similarly, cycles will be
similar to one another and therefore the network is highly
assortative. Conversely, dissimilar cycles correspond to
nodes which are separated by a large number of intermedi-
aries. Essentially two nodes which are similar to a third can
only differ by a relatively small amount �dictated by the tri-
angle inequality� and therefore two highly dissimilar nodes
must be widely separated in the network.

In Fig. 7 we illustrate the highly assortative �and in this
case without a scale-free degree distribution� structure of a
complex network generated from the Rössler flow. The net-
work exhibits assortativity and path-length characteristics of
those generated with the algorithm we describe in this paper.

C. Avian Influenza

We now consider the real network of connections between
outbreaks of Avian Influenza. The data and construction of
the network are detailed in �14�, briefly, each outbreak of
Avian Influenza since 2003 is represented by global coordi-
nates �latitude and longitude� and time. Two outbreaks are
connected if they are close in both time and space. The net-
work has been observed to be scale-free, highly assortative,
and not small world �14�. In Fig. 8�a� the general structure of
this network is depicted. The very large average path length

of the network is evident from its spindly “twig-like” struc-
ture. This is because the metric we employ limits the dis-
tance between connected nodes and prevents the occurrence
of “short-circuit” links between distant parts of the network.
The highly clustered and assortative connection between out-
breaks is evident from Fig. 8�b� where we depict the network
as a series of discrete pieces.

D. Summary

Table I summarizes the main numerical results discussed
above. We compare the average path length, clustering coef-
ficient, and assortativity of the BA model as well as our
shuffled and unshuffled models for scale-free networks. Our
method drastically increases path length and assortativity.
The assortativity of both the shuffled and unshuffled model
are comparable The unshuffled model also has a significantly
raised clustering coefficient. We find that the AI network
shares these topological characteristics exhibited by our
model. It is highly assortative, highly clustered, and exhibits
a large path length. Moreover, the relative magnitude of
these numbers match fairly closely. To mimic the behavior of
the shuffling algorithm we ignore the effect of the date of
outbreaks of Avian Influenza cases. We find that this small
change decreases the path length by approximately the same
magnitude as the change from the shuffled to unshuffled net-
work generation scheme. A more complex network genera-
tion scheme for time series data �15�, when applied to cha-
otic time series �see Sec. IV B�, also yields highly assortative
networks �in Fig. 7 the assortativity coefficient is about
0.595�. For example, a weighted complex network deduced
from the x component of the Rössler system exhibits a
power-law distribution of vertex strength when the system is

FIG. 6. �Color online� The complex network generated via the
method describe by Klemm and Eguíliuz. We display 250 nodes of
a network generated with the scheme described in �11� with m=2.
The highly disassortative structure of this network is evident �assor-
tativity estimated to be approximately −0.297�. The structure of this
algorithm stands in stark contrast to the detailed features presented
in Fig. 1.

FIG. 7. �Color online� Complex network generated from cycles
of a time series of the Rössler system. In this illustration, 250 suc-
cessive cycles where compared via cross correlation and thresh-
olded to produce an adjacency matrix which is then interpreted as a
complex network. Although this example is too short to assert that
the degree distribution of the underlying network is scale-free �and
we believe that it may not be�, this complex network clearly exhib-
its strong assortativity �assortativity coefficient estimated to be
0.595�, in contrast to the illustrations of �11�.
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chaotic, but not when the system is periodic. The network is
also observed to not exhibit a short average path length �for
a given connection threshold� and assortativity. In both the
case of the AI network �14� and the chaotic time series net-
work �15� the underlying network generation mechanism can
be reduced to the formation of selectively assortative connec-
tions, just as with the current algorithm.

V. CONCLUSION

We have proposed a mechanism to model scale-free net-
works without small-world characteristics by greedy assorta-
tive mixing. The mechanism for biasing attachment so that
new nodes connect to existing individuals with a similar
number of acquaintances is natural in society: most friends
have a similar number of friends. It is natural to presume that
the most efficient “networkers” �the individuals with the
highest degree� would be highly connected to one another.
Nonetheless, a surprising consequence of this constraint is
that the average path length is increased. This can be ex-
plained by observing that the average path length from the
network’s “networkers” to the rest of the network is rela-
tively small, but the path length from nodes with relatively
few links is appreciably increased. That is, in comparison to

a BA network, the highly connected nodes benefit from the
structure discussed in this paper, but the less highly con-
nected individuals �and the network as a whole� suffer in-
creased average path length.

The physically motivated algorithm presented in this pa-
per generates scale-free networks with a high degree of as-
sortativity that are not small world. This algorithm generates
a network structure very similar to that found in the AI net-
work and therefore provides an explanation for the emer-
gence of strong clustering observed in this real world disease
network. In an extension of this work we are now exploring
the application of the ideas presented here to generate highly
assortative networks with degree distributions other than
power law �16�.
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